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Synopsis 

In recent published work a method was proposed to calculate fracture toughness during the 
crack-propagation phase of the loading of notched specimens. In this paper, it is proposed that the 
fracture toughness J can have a value that does not exceed the product of the ultimate work to failure 
of the material, W f ,  times a characteristic remaining ligament length b,. I t  is proposed that crack 
propagation is unstable a t  ligament lengths less than b, and does not, therefore, demand further 
strain-energy input. The fracture toughness J at  any particular remaining ligament length b can 
be calculated from a term that is related to the area under the curve of the net section stress vs. the 
ratio of plastic load point displacement to remaining ligament length. Experimental data on the 
loading of double-edge-notched specimens of high-density polyethylene that were extended to failure 
were used to test the proposed theory. The experimental results were encouraging, although not 
conclusive, in supporting the proposed method of relating the crack toughness to the known material 
properties of the subject material. 

INTRODUCTION 

Recent developments in J-integral methods make it feasible to calculate the 
energies involved in crack opening and crack extension over the whole course 
of specimen failure for ductile materials. 

The description that follows starts with the old, familiar linear elastic fracture 
case, cites the parallel, less known inelastic fracture case, then proceeds to the 
J-integral method as applied to crack propagation or tearing. The intended 
original contribution of this paper is to develop a limit or bound to the total en- 
ergy of failure of a ductile specimen. 

The J integral is developed in terms of the area under the load-displacement 
curve rather than the usual differential expression so that J may be calculated 
using data from a single specimen. 

The tendency of a notched specimen to crack is related to the strain energy 
U introduced into the specimen by the displacement of the loading points ( s t ) .  
Figure 1 indicates the specimen geometry. At a critical notch length, a crack 
initiates at  the notch root. The critical value of the fracture toughness J (in 
Pam)  is, for the linearly elastic fracture mechanics case, 

(1) Ji, = 2 ( U0 - U)/ ta  

where 

is the area under the load-displacement curve for linear elastic conditions; P is 
the load; a is the notch length; t is the specimen thickness; and U0 is the area 
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Fig. 1. Definition of parameters in notched specimens. 

under the curve to the same 6 for an unnotched specimen of otherwise identical 
geometry. The difference (UO - U )  is then just due to the presence of the 
notch. 

The parallel inelastic case is that of a specimen very thin compared to its width 
and the distance between notch tips; the notch tips are blunt (i.e., the notch tip 
radius is of the same order of magnitude as the specimen thickness), and the 
material is ductile. On loading, crack initiation at the notch tip may be delayed 
until full yielding throughout the region of the notch plane has occurred. Fur- 
thermore, the notches are assumed sufficiently deep that the specimen in the 
regions away from the vicinity of the notch plane is in linear elastic strain. Under 
these conditions, the elastic portion of the load-displacement curve is small 
compared to the total displacement so that 

u P6t (3) 

Under these conditions, the critical value of the fracture toughness J at  crack 
initiation for a double-edge-notched specimen in tension is given by 

(4) Ji, = (2U - PGt)/bt 

where 

b = W - 2 a  (5) 
W is the specimen width and a is the notch depth. If the elastic portion of the 
loading curve is significant, then 

Ji, = G + (2UP - PGp)/bt (6) 
where G is the fracture toughness of the same material under linear elastic 
fracture mechanics conditions and the superscript P denotes use of the inelastic 
portion of the loading curve. The derivation of eq. (6) was first reported by Rice, 
Paris, and Merkel.' The secant area A of a load-total-displacement curve is 
given as 

2A = 2UP - P6P = 2Ut -Pat (7) 
The secant area can be directly determined from either a load-total-displacement 
curve or a load-inelastic-displacement curve and can, therefore, be used to 
evaluate Eq. (6). 
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To obtain a perspective on the course of crack opening, initiation, and prop- 
agation, consider the following. When the load P is plotted as a function of the 
total load point displacement P ,  as in Figure 2, a conventional load-elongation 
curve qualitatively identical to that obtained with an unnotched specimen is 
found. The initial slope is dependent on the notch depth, being given by 

initial slope = E 

where E is Young’s modulus, x is a reduced notch depth (2alW) ,  10 is the initial 
sample length, and Y is an empirical finite width correction factor given in terms 
of a polynomial in x . ~  If the notches are reasonably deep but W >> 2a, the 
maximum load is related to the plane-strain yield strength (equal to 2 f i  times 
the uniaxial tension yield strength when the pressure coefficient of the yield 
surface is negligible and when a Von Mises yield condition applies). 

As indicated schematically in Figure 2, changes in notch root radii change the 
position of the loadclisplacement curve at which cracks initiate at the notch root. 
The sharper the notch, the earlier the crack initiates. The load-displacement 
after crack init iation follows the dashed line appropriate to the root radii. 

The course that the dashed line follows is not invariant but depends on two 
factors: the load train compliance (machine compliance plus compliance in the 
specimen away from the notch plane) and the processing or extensibility of the 
material in front of the extending crack. A crack is called “stable” if crack growth 
stops when the displacement of the load points stops. A crack is “unstable” if 
the crack proceeds to failure or complete separation even if the load-point dis- 
placement has ceased. Usually, “unstable” crack growth is very rapid-of the 
order of several meters per second. A complete characterization of the fracture 
toughness required to fracture completely a specimen requires an estimate of 
the energy required to propagate the growing cracks. 

Recent work has extended the Rice, Paris, and Merkel work [Eq. (6)] to the 
situation of a propagating crack. Burns and McMeeking4 obtained the result 
that 

CONSTANT RATE EXPT. 
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50 

6‘ - 
Fig. 2. Schematic diagram of a load-total-displacement curve of a notched specimen pulled in 

tension. Crack initiation depends on notch tip radius. The dashed lines represent the course of 
the load trace during the crack propagation phase. 
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where bl is the ligament length after a given amount of crack growth has occurred. 
If no crack growth occurs, b remains constant through the test, and eq. (9) is 
identical with eq. (6). The Burns-McMeeking result applies to stable cracking 
only. 

The quantity (Pltb) is seen to be an average net stress through the notch plane. 
The key plot to evaluate eq. (9) is a plot of (Pl tb)  vs. (Splb). This plot will differ 
from Figure 2 in that Sp is zero until yielding is fully developed through the notch 
plane or equivalently until after the maximum in Figure 2, and that the current 
notch plane cross-sectional area ( tb )  is being used. As the crack grows, the load 
will drop below the envelope curve of Figure 2, but the load drop is supposed to 
be compensated by the ligament length reduction to yield overlapping curves 
regardless of the starting ligament length. One of the experimental objectives 
is to check this point. 

In Figure 3, a schematic is drawn by assuming that the plot of Pltb vs. SPlb 
encompasses a rectangular section. Assuming this relationship, the bracketed 
term of eq. (9) is simply PGflbft and ( J  - G) is therefore PSflblt.  Although Plbt 
is invariant with decrease in b, the term Splb increases without limit to the right 
as b approaches zero and the area approaches infinity. Thus, the fracture 
toughness of any material approaches infinity. This paradoxical situation calls 
for a natural limit to the reduction of b. 

We recognize that only the material a t  the propagating crack tips is a t  its 
maximum extension, so that most of the material in the ligament length has not 
yet reached maximum extension. At some minimum ligament length b, however, 
all the material in the remaining cross section will be at maximum extension. At 
this point, unstable, rapid failure should ensue just as happens with fully ex- 
tended unnotched specimens. The following relationship, analogous to an 
equation proposed by Thomas? recognizes a minimum ligament length for stable 
propagation. 

J ,  = b, W f  (10) 

where G is neglected (small compared with J ) ,  b, is the smallest value of b for 
which stable crack growth is found, and W f  is the energy per unit volume to 
failure of an unnotched specimen of the same material. W f  is obviously iden- 
tified with the bracketed term of eq. (9) at the onset of unstable crack growth. 

P 
bt 
- 

6P 
b 
-- 

Fig. 3. Load per unit remaining area of unseparated material in the notch plane (net average stress) 
as a function of the ratio of plastic displacement to remaining ligament length (net stress assumed 
constant). 
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J ,  is the maximum possible fracture toughness allowable under plane stress 
and at specified rate and temperature. J ,  is always greater than Ji,, the fracture 
toughness at crack initiation. For brittle materials, J ,  may be just slightly larger 
than Ji,. For sharp-tipped notches in ductile materials, J ,  may be orders of 
magnitude larger than Ji,. 

To show that eq. (10) has predictive value, it is necessary to show (1) that plots 
of Pl tb  vs. 6plb are independent of the starting and current ligament lengths 
(regardless of the particular shape of the envelope) and (2) that no values of 
2J(Plbt)d(GPlb) - PGP/b:t exceed Wj. 

The experiments described in the balance of this report are encouraging though 
not conclusive in supporting the proposed model of crack propagation. 

It was convenient to work with high-density polyethylene sheets because the 
cracks propagated quite slowly through the ligament length. Under our rather 
elementary experimental procedures, the load and the remaining ligament length 
could be experimentally associated. This was seldom possible with the more 
rapid rates of crack growth that are found with more brittle plastics. Another 
factor encouraging the use of polyethylene was the necessity of measuring liga- 
ment thickness concurrently with the load and ligament-length measurements. 
Broad necked-down surfaces were available for thickness measurement. 

EXPERIMENTAL 

Specimens were 1-in.-wide dog-bone specimens described previously6 and 
notched symmetrically on each side. The specimens were inked in a grid pattern 
extending to 0.5 in. above and below the notch plane. The specimens were pulled 
in an Instron testing machine. The grid pattern was photographed periodically 
to measure displacement across the plastic zone. An event marker was depressed 
simultaneously with the taking of the photograph to correlate displacement with 
load. In some cases, the thickness was obtained by measurement with a mi- 
crometer immediately after the photography. 

Material 

High-density polyethylene sheets of 0.02 g/10 min melt index (ASTM D1238, 
Condition E) were used. The sheets had an average thickness of 70 mils. 

Experimental Analysis 

Three quantities were measured on the negatives that were obtained by pho- 
tographing the gridded zones of the specimens during extension: the total length 
of the grid zone in the direction of loading, the length of a zone from one end of 
the grid to a crossline just at  the boundary of the yielded zone, and the distance 
between the notch tips. 

Figure 4 shows a tracing of the load-displacement chart for run no. 4 with the 
polyethylene. The curve is highly nonlinear, the material exhibits considerable 
ductility, and the yield maximum is broad. The pips along the curve indicate 
the displacement at which photographs were taken. When tearing commenced, 
there was a steady drop in load. Figure 5 comprises photographs taken at  various 
stages of the displacement, with the numbers corresponding to the numbered 
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0.16 notch length 

0 0.2 0.6 1 .o 
CROSSHEAD DISPLACEMENT, in. 

Fig. 4. Experimental load-total displacement trace of high density polyethylene. Pips on the 
trace represent points at which photographs were taken. 

pips on Figure 4. The first frame was taken when the specimen was under zero 
load: Frame 9 represents the specimen at  maximum load when yielding and 
necking had proceeded completely across the ligament length. Note that the 
width reduction of the grid is less in the notch plane than away from the notch 
plane. The through-thickness yielding occurs under nearly plane-strain con- 
ditions in the notch plane and develops and extends with increase in displace- 
ment. The notches become blunter, and finally tears start at  each notch tip. 

The example shown is one of the most misaligned crackgrowth patterns ob- 
served. Nonetheless, b was measured as indicated. As soon as the notch tips 
reached the same vertical plane, complete separation occurred along a fraction 
in the vertical plane. The elastic component of the displacement was determined 
by measuring the distance l e  in the photograph. l e  was corrected to the total 
grid length by dividing 1 by its fraction of the total grid length at commencement 
of loading. Further mention of l e  is to be taken as "corrected" Ze. The total grid 
length 1 in the same vertical plane was also measured. Then 

be = 1" - 15 

6t = I t  - p 0 

(-jP = at - be 
(11) 

Fig. 5. Photographs of the inked grid on the specimen surface during displacement. Same 
specimen as Figure 4. Numbers correspond to the trace pip numbers in Figure 4. 
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wherethe subscript 0 refers to the measurement at commencement of loading. 
6" contains elastic components ?iC "due to the notch" and 6"" "as if the notch 
were not present." 6 p  is the plastic displacement "due to the notch." Because 
of the assumption of linear elastic displacement in the regions of the specimen 
away from the notch region, there is no 6 p  as if the notch were not present. 
Therefore, because only 6 p  is used in the subsequent calculations, it is not nec- 
essary to be concerned about the loading compliance. 

The displacement and ligament-length readings were made on the negatives 
with an optical comparator to ensure precision. Table I contains two examples 
of the experimental readings and the resultant calculations. Only for runs at  
0.002-ipm crosshead speed was it possible to obtain thickness readings with the 
present methods. It may be noted that the estimated 6" often exceeds before 
the onset of full plastic yielding in the ligament, probably an artifact of the cor- 
rection procedure. Also, note that crack initiation is not necessarily associated 
with maximum load. 

Elongation to failure of an unnotched specimen of the material was required 
in order to measure Wj, the energy per unit volume, to failure of an unnotched 
specimen. A small tension-test specimen was photogridded, and photographs 
were taken periodically during the extension. On the photographs, the sepa- 
ration of two adjacent lines normal to the direction of extension was measured. 
Assuming a Poisson's ratio of l/2, the corresponding change in cross-sectional area 
was calculated. The true-stress-true-strain plot in Figure 6 was made where 
true strain was calculated as the natural logarithm of the elongation. The work 
per unit volume to failure was taken as the area under this curve and was de- 
termined to be 1.93 X lo8 Pa. 

RESULTS AND DISCUSSION 

The results of the experiments at  0.2-ipm and 0.002-ipm crosshead speeds are 
displayed in Figure 7. The effects of thickness reduction are ignored, and the 
load per unit ligament width is plotted vs. the ratio of plastic displacement to 
ligament width. The tearing profile was blunter (the crack opening angle was 
larger) with the slower extension. This phenomenon is shown in Figure 8. 

Repeated runs at  0.2-ipm crosshead speed for initial notch lengths from 0.08 
to 0.32 in. and notch root diameters of 3/~4 to 7/~4 in. show reasonably good su- 

TABLE I(a) 
Calculation of Load and Plastic Displacements; Run No. 9, High-Density Polyethylene* 

Frame no. p (lb.) b (in.) P/b (lb/in.) de (in.) 1 3 ~  (in.) 8 P  (in.) 6 P / b  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
120 
134 
135 
112 
102 
95 
94 
88 
59 

0.453 
0.456 
0.452 
0.439 
0.417 
0.406 
0.395 
0.370 
0.342 
0.209 

0 
264 
297 
308 
269 
250 
240 
253 
256 
283 

0 
0.C43 
0.057 
0.074 
0.075 
0.075 
0.072 
0.074 
0.075 
0.074 

0 
0.035 
0.054 
0.080 
0.121 
0.153 
0.200 
0.286 
0.351 
0.475 

0 
0 
0 
0.006 
0.046 
0.078 
0.128 
0.212 
0.276 
0.401 

0 
0 
0 
0.014 
0.110 
0.192 
0.324 
0.573 
0.807 
1.919 

a Crack initiated after Frame 7. &in. root diameter, 0.2-ipm crosshead speed. 
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HDPE 
UNAXIAL EXTENSION 

p 50[ 0.2 ipm CROSSHEAD RATF 
I 
$ 4 0  - 

- FRACTURE 

- .- 
i3. 

83 
a w 

K 
I- 

c - WORKTO 
FRACTURE = 
193 MPa 

TRUE STRAIN E 

Fig. 6. True-stress-true-strain curve to failure of the high-density polyethylene used in this 
study. 

perposition in Figure 7. The plot is independent of ligament length. The po- 
sition on the abscissa depends only on the current value of ligament length re- 
gardless of the initial value even if cracks are propagating from the notch root. 
For the lower rate of crosshead displacement, the curve profile remains similar 
but is shifted vertically downward for 0.002 ipm to about 75% of its value at  0.2 
ipm. 

Data on thickness reduction at the slow rate were available so that it is possible 
to calculate the quantity Plbt and plot that against 6,Ib. This plot is shown in 
Figure 9, and the two sets of data are probably overlapping and part of a con- 
tinuous curve. The y intercept is about 4 ksi and is deduced from the known 

I 1 I I 
320 t 

I ALL LOADS CORRECTED TO I NOMINAL THICK. OF 0.07" 

0 0.8 1.6 2.4 

bP/b 

Fig. 7 .  Load (per unit remaining ligament length) as a function of the ratio of plastic displacement 
to remaining ligament length. Solid lines represent runs at 0.002 ipm. The shaded area encompasses 
the 11 runs a t  0.2 ipm. 
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0.2 ipm 0.002 iDrn 
HIGH-DENSITY POLYETHYLENE 

Fig. 8. The propagating crack operating angle IS greater at the lower crosshead speed. 

yield strength of this material. A continuous line has been drawn through the 
points. 

Because the area under the curve is simply related to the bracketted factor 
of eq. (9), J is calculated by determining the area under the curve to a given re- 
maining ligament length, calculating the bracketed factor, and multiplying it 
by the remaining ligament length. There are two points of elaboration to be 
made on the basis of the results expressed in Figure 9. 

The first is the question of how large an area is the maximum allowable. It 
was said in the Introduction that this was given by 

and therefore 
J, = b, Wf  (10) 

Plbt. kri 

P6P 
2(area) - - b2t wf 

24 

16 

8 
TO THIS LIMIT 

0 0.8 1.6 2.4 

S plb 

Fig. 9. Net average notch plane stress as a function of the ratio of the plastic displacement to re- 
maining ligament length. The limiting area to the vertical solid line is calculated by eq. (10) using 
the data of Figure 6 to define the limiting area. 
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TABLE I1 
Calculation of Fracture Toughness J from Load Curve Area Measurements 

Area p6p/b2t 2 (area) - 
p6Plb2t bl (in.) J (lblin.) 6plb (psi) (psi) 

0.2 1136 1440 830 
0.4 2912 4000 1820 0.52 950 
0.6 5120 6960 3280 0.46 1510 
0.8 7710 10,880 4540 0.43 1950 
1.0 10,620 15,200 6050 0.40 2420 
1.2 13,860 20,160 7550 0.38 2870 
1.4 17,340 25,200 9490 
1.6 21,100 31,400 10,850 
1.8 25,100 37,400 12,700 
2.0 29,300 43,200 15,460 
2.2 33,700 49,300 18,180 
2.4 38,300 55,700 20,900 
2.6 43,000 62,400 23,600 
2.8 47,900 68,300 27,500 

If we obtain points on the curve such that eq. (12) is violated, the conjecture is 
wrong. Our sparse data fall within the bounds. There is a question of the ap- 
plication of Wf to the notched specimen because the data were obtained at  a 
0.2-ipm crosshead rate for the unnotched specimen and at  a 0.002-ipm crosshead 
rate for the notched specimen. This difference is not as large as it appears be- 
cause the different effective gage lengths will reduce the effective difference. 
Another mitigating factor is the rapid rise in the left side of eq. (12) as the 28 ksi 
limit is approached. Thus, a downward shift of Wf will not move the limit to 
the left very drastically. 

I I I I I 4 - 
HDPE 

0.002 ipm 

0.36 0.40 0.44 0.48 0.52 0.56 0.60 

b, inches 

Fig. 10. Increase in J during the crack growth phase. The tangent to the curve gives the change 
in J per unit change in crack length. &Ida is predicted to reach a limiting value of 56 ksi (385 MPa) 
ultimate slope prior to complete specimen failure. 
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The second point is that the ability to calculate AJIAa from this data can be 
demonstrated. In Table 11, the calculation of J from the data of run no. 14 is 
demonstrated. Then J is plotted versus the remaining ligament length (Fig. 
10). The slope of this curve is related to AJlAa as indicated. A t  a ligament 
length of 0.43 in., AJlAa has a value of 29.6 ksi and is increasing as b decreases. 
From eq. (lo), we predict that unstable fracture occurs when AJIAa > 56 ksi. 
The reader should note the close resemblance of these results with results for 
ductile metals reported by Paris et al.7 and Hutchinson and Paris.* 

It is to be noted parenthetically that instability onset can occur not only by 
material instability as detailed above but also by load compliance and thermal 
in~tabili ty.~ 

CONCLUSIONS 

1. The Burns-McMeeking equation forms an efficient mechanism to plot 
crack-growth data on a universal plot that is independent of geometry. 

2. High-density polyethylene yields crack-growth data for double-edge- 
notched specimens in tension that follow the predicted form of Burns and 
McMeeking. 

3. Consideration of the limits of material extension leads to a prediction of 
a material instability threshold for ductile crack growth. 

4. Limited experimental data support the concept of a material-instability 
threshold. 
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